Kajian Literatur Pengaruh Karbon Aktif terhadap Penurunan Kadar Fosfat pada Pengolahan Air Limbah *Laundry*

¹Rika Putri Kinasih, ²Dwi Astuti

Prodi Kesehatan Masyarakat, Fakultas Ilmu Kesehatan, Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol Pos I, Pabelan, Kartasura, Sukoharjo 57169, Indonesia E-mai: j410180080@student.ums.ac.id

ABSTRAK

Limbah *laundry* yang dibuang sembarangan dapat menyebabkan eutrofikasi. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh karbon aktif terhadap penurunan kadar fosfat pada pengolahan air limbah *laundry* berdasarkan literatur. Desain studi literatur ini menggunakan *database Google Scholar*, Garuda, dan Elsevier dengan tahun terbit 2011-2021. Kata kunci dalam penelusuran menggunakan Bahasa Indonesia dan Bahasa Inggris yaitu karbon aktif pada limbah *laundry*, pengolahan limbah *laundry*, penurunan kadar fosfat, kandungan air limbah *laundry*, *removal of phosphate by activated carbon*, dan *laundry wastewater treatment*. Kriteria inklusi meliputi variabel terikat dari penelitian tersebut adalah kadar fosfat, terindeks ISSN, terindeks ISBN, jenis penelitian eksperimen, dan memuat topik pengaruh karbon aktif dalam penurunan kadar fosfat pada pengolahan limbah *laundry*. Berdasarkan hasil analisis, terdapat tiga penelitian yang berhasil menurunkan kadar fosfat sesuai baku mutu air limbah bagi usaha dan/atau kegiatan industri sabun, detergen, dan produk-produk minyak nabati yaitu 2 mg/l dan hasil penelitian yang paling efektif adalah artikel penelitian yang dapat menurunkan kadar fosfat hingga tidak terdeteksi lagi dari konsentrasi awal 14,148 mg/l menjadi 0 mg/l. Berdasarkan analisis yang telah dilakukan, karbon aktif memiliki pengaruh dalam penurunan kadar fosfat pada pengolahan air limbah *laundry*.

Kata kunci: penurunan fosfat, air limbah laundry, karbon aktif

ABSTRACT

Carelessly disposed of laundry waste can cause eutrophication. The purpose of this study is to determine the effect of activated carbon on reducing phosphate levels in laundry wastewater treatment based on the literature. This literature study essay uses the Google Scholar, Garuda, and Elsevier databases with the publication year 2011-2021. Keywords in searches using Indonesian and English are activated carbon in laundry waste, laundry waste treatment, decreased phosphate levels, laundry wastewater content, removal of phosphate by activated carbon, and laundry wastewater treatment. The inclusion criteria include bound variables from the study are phosphate levels, indexed ISSN, indexed ISBN, experimental research types, and contains the topic of the influence of activated carbon in reducing phosphate levels in laundry waste treatment. Based on the results of the analysis, there were three studies that succeeded in reducing phosphate levels according to wastewater quality standards for businesses and / or industrial activities of soap, detergents, and vegetable oil products, namely 2 mg/l and the most effective research results were research articles that could reduce phosphate levels until they were no longer detected from an initial concentration of 14.148 mg/l to 0 mg/l. Based on the analysis that has been carried out, activated carbon has an influence on reducing phosphate levels in laundry wastewater treatment.

Keywords: phosphate reduction, laundry wastewater, activated carbon

Website: https://jsemesta.iakmi.or.id/index.php/jm e-ISSN: 2797-4510

Pendahuluan

Masalah pencemaran lingkungan yang terjadi pada beberapa kota di Indonesia menampilkan indikasi yang cukup serius. Penyebab dari pencemaran ini bukan hanya mengenai pencemaran udara, tetapi juga pencemaran air dan pencemaran tanah. Hal ini disebabkan buangan industri tanpa adanya pengolahan terlebih dahulu dan langsung disalurkan ke sungai terdekat (Hartono *et al.*, 2021). Meningkatnya jumlah air limbah domestik harian menjadi pemicu seiring dengan perkembangan penduduk (Asmadi dan Suharno, 2012; Haderiah *et al.*, 2015).

Seiring dengan pertumbuhan penduduk di perkotaan maupun pedesaan, maka pola hidup pun juga akan perlahan berubah. Berbagai kesibukan seseorang seperti jam kerja yang padat, aktivitas lain yang menyita banyak waktu, atau bahkan adanya sifat malas membuat seseorang tidak dapat memenuhi kebutuhan rumah tangganya secara mandiri. Hal ini menyebabkan seseorang membutuhkan iasa pelayanan untuk meringankan pekerjaan rumah seperti jasa pencuci pakaian yaitu laundry. pelayanan ini sangat membantu seseorang.

Usaha *laundry* merupakan salah satu usaha yang sedang menjamur di masa sekarang. Perkembangan kegiatan *laundry* pakaian di negara Indonesia dimulai tahun 1990-an berkat adanya sistem waralaba (Hasanuddin, 2014). Namun banyaknya limbah yang dihasilkan sehingga menjadi salah satu faktor pencemar lingkungan dan jangan sampai menimbulkan masalah kesehatan yang lain. Usaha *laundry* sebagian besar tidak memiliki

sistem pengolahan limbah dari proses *laundry* tersebut. Jika limbah *laundry* yang dihasilkan tersebut dibuang begitu saja tanpa adanya pengolahan maka akan berdampak negatif terhadap tingkat kelestarian lingkungan sekitar.

Dampak dari pencemaran lingkungan terhadap kesehatan manusia memang tidak secara langsung namun akan muncul dampak setelah beberapa tahun kemudian. Pencemaran ini terjadi karena adanya ketidakseimbangan alam dan manusia yang kurang memperhatikan batas daya dukung alam. Saat daya dukung alam menurun, kemampuan alam untuk berkontribusi pada kehidupan manusia juga menurun. Pencemaran lingkungan terbagi menjadi tiga, yaitu air, udara, dan tanah (Puspasari *et al.*, 2022). Dari berbagai pencemaran lingkungan tersebut, masing-masing memiliki efek tersendiri.

Pencemaran lingkungan melalui air dapat menimbulkan berbagai penyakit seperti kolera, disentri, atau *typhoid*. Pencemaran lingkungan melalui udara biasanya menyebabkan gangguan pernapasan seperti *tuberculosis*, influenza, asma, bronkitis, dan gangguan pernapasan lainnya. Sedangkan pencemaran lingkungan melalui tanah dapat menimbulkan penyakit tetanus, *filariasis*, dan berbagai penyakit lainnya (Adyatma & Kartika, 2013).

Dampak pencemaran lingkungan dibagi menjadi tiga, yaitu secara biologi, kimia, dan fisika. Dari sudut pandang biologis, bahaya pencemaran lingkungan seringkali disebabkan oleh keberadaan organisme patogen yang berdampak negatif bagi kesehatan manusia (Puspasari et al., 2022; Website: https://jsemesta.iakmi.or.id/index.php/jm e-ISSN: 2797-4510

Pasaribu, 2020). Bahaya pencemaran lingkungan dari sisi kimia dapat menyebabkan bahaya kesehatan seperti iritasi, sensitisasi, dan karsinogenik. Bahaya pencemaran lingkungan dari sisi fisika yang muncul karena faktor fisik seperti sinar ultraviolet, gelombang mikro, getaran, kebisingan, medan magnet statis, tekanan udara, dan paparan di luar nilai ambang batas akan menyebabkan berbagai macam gangguan kesehatan bagi manusia (Puspasari *et al.*, 2022;).

Limbah *laundry* memiliki kandungan zat kimia yaitu kadar fosfat dan surfaktan. Kedua zat ini berfungsi untuk pengikat kotoran yang menempel pada pakaian. Pembuangan limbah *laundry* yang tidak hati-hati dapat menyebabkan eutrofikasi, di mana terdapat kelebihan nutrisi di lingkungan perairan, memungkinkan alga tumbuh dan menghalangi sinar matahari serta mengurangi kadar oksigen di dalam air (Astuti & Mersi, 2015; Suprijandani *et al.*, 2021).

Usaha *laundry* semakin hari akan semakin meningkatkan limbah cair dari detergen yang mengandung tinggi fosfat. Ada pula detergen dengan rendah fosfat namun dapat menyebabkan iritasi karena bersifat alkalis. Limbah *laundry* tinggi fosfat berasal dari salah satu bahan yang terkandung dalam detergen yaitu *Sodium Tripoly Phosfhate* atau sering disebut STPP (Mu'in *et al.*, 2017).

Menurut PERMEN LH RI No 5 Tahun 2014 tentang Baku Mutu Air Limbah bagi Usaha dan/atau Kegiatan Industri Sabun, Detergen, dan Produk-Produk Minyak Nabati menetapkan bahwa standar baku mutu kadar fosfat yaitu 2 mg/l dengan beban pencemaran

sabun paling tinggi yaitu 0,016 kg/ton dan detergen sebanyak 0,002 kg/ton.

Negara Indonesia saat ini belum ada perlakuan khusus untuk pengendalian pencemaran khususnya di sektor laundry. Metode pembuangan limbah yang efektif dan efisien dapat menjadi solusi untuk mengurangi risiko terhadap lingkungan dan organisme dari tingkat limbah laundry. Ada beberapa metode yang bisa dimanfaatkan untuk menurunkan kadar yang terkandung dalam limbah laundry, antara lain metode fisika, biologi, atau kimia. Metode yang dinilai efektif untuk mengurangi kadar fosfat pada limbah *laundry* yaitu metode kimia dengan cara absorbsi yang merupakan konsep paling sederhana dengan menambahkan koagulan, misalnya karbon aktif, alum, kapur, dan lain sebagainya (Hutomo, 2015).

Menurut Masduqi (2000) yang dikutip oleh Apriyani (2017), menyatakan bahwa bisnis *laundry* di sekitar Keputih Sukolilo, Surabaya sebanyak 65-80 kg/hari menghasilkan air limbah *laundry* sebesar 35-40 liter dengan kadar fosfat 7,40 mg/l. Hasil penelitian dengan debit dan volume adsorben yang optimal pada debit 5 ml/menit dan variasi tinggi 15 cm. Semakin kecil debit aliran dan naiknya tinggi adsorben

maka waktu kontak dengan adsorben akan semakin panjang, sehingga penyisihan fosfat akan efektif.

Menurut penelitian Utomo *et al* (2018) yang melakukan percobaan untuk menurunkan kadar fosfat menggunakan tiga ukuran karbon aktif yang berbeda, yaitu -60, -120, dan -200 mesh. Hasil dari percobaan tersebut adalah

e-ISSN: 2797-4510

pada variasi ukuran terkecil didapatkan hasil adsorbansi 0,009 yang artinya ukuran partikel yang semakin kecil maka kemampuan karbon aktif untuk menyerap fosfat akan semkain besar. Dari percobaan tersebut dapat disimpulkan bahwa karbon aktif sangat berpotensi untuk mengadsorpsi kandungan fosfat yang ada di dalam limbah *laundry*.

Menurut penelitian Majid et al (2017) kandungan fosfat dalam limbah *laundry* sebelum ditambahkan karbon aktif adalah 4,98 mg/l, yang artinya melebihi ambang batas. Pada percobaan pertama peneliti menambahkan karbon aktif sebanyak 1 g, 2 g, dan 3 g dengan hasil saat ditambahkan karbon aktif sebanyak 3 g berhasil menurunkan kadar fosfat sebanyak 1,70 mg/1(65,86%).Sedangkan pada percobaan kedua peneliti juga melakukan hal yang sama, namun hasil uji kadar fosfatnya berbeda yaitu saat penambahan 3 g karbon aktif dapat mengurangi kadar fosfat sebanyak 1,89 mg/l (62,04%). Hasil penelitian menyimpulkan bahwa dosis karbon aktif yang terbukti mampu mengurangi kadar fosfat adalah 3 g dengan hasil penurunan hingga di bawah 2 mg/l yang berarti

memenuhi syarat mutu. Maka dapat disimpulkan pula bahwa semakin tinggi konsentrasi karbon aktif maka kadar fosfat yang ada di dalam limbah *laundry* akan semakin rendah.

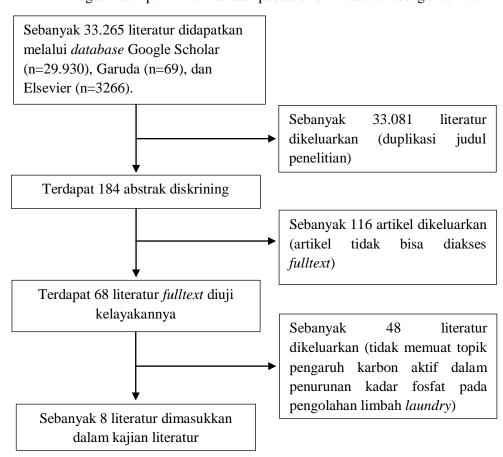
Berdasarkan uraian di atas, diketahui bahwa air limbah *laundry* memiliki dampak buruk yang cukup membahayakan manusia dan lingkungan sekitar sehingga memerlukan pengolahan limbah setelah proses produksi untuk mengurangi risikonya dengan cara

menurunkan kadar fosfat pada air limbah laundry yang merupakan kadar tertinggi pada limbah laundry air dan berpotensi menyebabkan eutrofikasi. Berapa penelitian yang telah dilakukan, karbon aktif terbukti efektif untuk menurunkan kadar fosfat dalam limbah laundry. Berdasarkan hal tersebut, penulis tertarik untuk mengulas lebih dalam tentang efektivitas karbon aktif terhadap penurunan kadar fosfat pada air limbah laundry dengan cara mengkaji artikel terdahulu untuk menganalisis lebih dalam tentang keefektifan karbon aktif dalam menurunkan kadar fosfat yang terdapat di dalam limbah laundry.

Metode Penelitian

Penelitian ini menggunakan metode merupakan studi literatur yang metode penelitian yang menggunakan metode pengumpulan data dari berbagai pustaka kemudian dianalisis untuk memberi pemahaman tentang pengaruh karbon aktif terhadap penurunan kadar fosfat pada air limbah laundry. Database yang digunakan untuk mencari artikel ini meliputi Google Scholar, GARUDA, dan Elsevier. Penulusuran literatur dimulai dari tahun 2011 hingga 2021 untuk dianalisis.

Penelusuran artikel pada penelitian ini menggunakan dua bahasa, yaitu Bahasa Inggris dan Bahasa Indonesia dengan kata kunci karbon aktif pada limbah *laundry*, pengolahan limbah *laundry*, penurunan kadar fosfat, kandungan air limbah *laundry*, *removal of phosphate by activated carbon*, dan *laundry wastewater treatment*. Selain itu, artikel harus terindeks ISSN (*International Standard Serial*)


Number), artikel terindeks ISBN (International Standard Book Number), SINTA, artikel dengan jenis penelitian eksperimen, dan artikel yang memuat topik pengaruh karbon aktif dalam penurunan kadar fosfat pada pengolahan limbah laundry. Artikel akan dieliminasi secara langsung jika artikel tersebut berupa skripsi/tesis serta artikel berbayar.

Kriteria kelayakan artikel dalam proses pencarian artikel melalui beberapa tahapan berikut ini:

 Artikel mempunyai variabel terikat kadar fosfat, didapatkan melalui database Google Scholar, Garuda, dan Elsevier. Dari tahap ini diperoleh sebanyak 33.265 literatur.

- 2. Tidak terdapat duplikasi judul artikel, diperoleh total 184 berupa abstrak artikel.
- 3. Dapat diakses secara *fulltext*. Pada tahap ini terdapat 116 artikel tereliminasi (dari 184) karena hanya bisa dibuka abstraknya (tidak *fulltext*), sehingga tersaring sebanyak 68 artikel *fulltext*.
- 4. Uji kelayakan tahap akhir terhadap 68 artikel dilakukan dengan menyaring artikel yang kontennya fokus dan spesifik pada pembahasan tentang pengaruh karbon aktif dalam penurunan kadar fosfat pada pengolahan limbah *laundry*. Dari proses tahap akhir ini diperoleh sebanyak 8 artikel yang layak untuk dikaji.

Diagram alur pemilihan literatur pada artikel ini adalah sebagai berikut

Gambar 1. Alur Pemilihan Literatur

Hasil

Berikut hasil skrining jurnal yang dianalisis dengan metode kajian literatur sebanyak delapan jurnal. Hasil analisis jurnal ditampilkan dalam bentuk tabel di bawah ini:

Tabel 1. Rekap Hasil Pencarian Jurnal

No	Peneliti, Tahun	Judul	Jurnal, Volume, dan Terindeks	Hasil
1.	Septiany Palilingan, Meity Pungus, Farly Tumimomor (2019)	Penggunaan Kombinasi Adsorben sebagai Media Filtrasi dalam Menurunkan Kadar Fosfat dan Amonia Air Limbah <i>Laundry</i>	Fullerene Journ of Chemistry, 4(2), 48-53 ISSN: 2598-1269 SINTA 4: https://sinta.kemdikbud.go.id/jour nals/detail?id=2341 GARUDA: https://garuda.kemdikbud.go.id/do cuments/detail/1248665	Hasil dari uji parameter fosfat dan amonia menyatakan bahwa adanya penurunan kadar fosfat dan amonia setelah proses filtrasi pada sampel limbah <i>laundry</i> yaitu masing-masing 83,3% dan 63,6%. Dari uji tersebut, kombinasi adsorben alam contohnya seperti zeolit, arang aktif, ferolit, pasir silika, dan antrasit dinyatakan dapat dimanfaatkan untuk media filtrasi.
2.	Pungut, Muhammad Al Kholif, Wilda Diah Indah Pratiwi (2021)	Penurunan Kadar Chemical Oxygen Demand (COD) dan Fosfat pada Limbah Laundry dengan Metode Adsorpsi	Jurnal Sains dan Teknologi Lingkungan, 13(2), 155-165 P-ISSN: 2085-1227 E-ISSN: 2502-6119 GARUDA: https://garuda.kemdikbud.go.id/do cuments/detail/2241864	Dari penelitian yang telah dilakukan menunjukkan efisiensi kadar COD dengan media karbon aktif pada reaktor 1 yaitu 72.48%. Kadar COD dengan media zeolit pada reaktor 3 sebanyak 64.55% dinilai paling efektif. Kadar fosfat dengan media karbon aktif pada reaktor 2 menunjukkan efisiensi penurunan sebanyak 92.09%, sedangkan karbon aktif dengan media zeolite pada reaktor 4 dianggap paling efektif sebanyak 96.44%. Dalam penelitian ini, media untuk menurunkan kadar COD yang paling efektif yaitu karbon aktif, sedangkan media untuk menurunkan kadar fosfat yaitu zeolite. Untuk menurunkan kadar COD, tinggi media yang paling efektif pada karbon aktif yaitu 40 cm, sedangkan pada zeolit dengan tinggi 60 cm.
3.	Lila Kurnia Damayanti dan Euis Nurul Hidayah (2021)	Pengaruh Adsorben Komersial terhadap Penurunan Fosfat dan Surfaktan Anionik (Detergen) pada Air Limbah <i>Laundry</i>	EnviroUs, 2(1), 18-26 E-ISSN: 2777-1032 P-ISSN: 2777-1040 GARUDA: https://garuda.kemdikbud.go.id/do cuments/detail/2401129	Metode penyerapan menggunakan karbon aktif komersial <i>upflow</i> dengan variasi debitnnya adalah 5 ml/menit, 10 ml/menit, dan 15 ml/menit serta variasi tingginya adalah 10 cm, 15 cm, dan 20 cm dengan waktu sampling 2 jam, 4 jam, 6 jam, 8 jam, 10 jam dan 12 jam. Efisiensi tertinggi dari penyisihan fosfat yaitu 99,07% dan surfaktan anionik (detergen) 95,35%. Debit optimum yaitu 5 ml/menit dengan ketinggian 15 cm fosfat dan 20

Jurnal Semesta Sehat, Vol 2, No. 2, Agustus 2022 Website: https://jsemesta.iakmi.or.id/index.php/jm

No	Peneliti, Tahun	Judul	Jurnal, Volume, dan Terindeks	Hasil
	,			cm surfaktan anionik (detergen).
4.	Illah Sailah, Fitri Mulyaningsih, Andes Ismayana, Tyara Puspaningrum, Anis Annisa Adnan, Nastiti Siswi Indrasti (2020)	Kinerja Karbon Aktif dari Kulit Singkong dalam Menurunkan Konsentrasi Fosfat pada Air Limbah Laundry	Jurnal Teknologi Industri Pertanian, 30(2), 180-189 P-ISSN: 0216-3160 E-ISSN: 2252-3901 SINTA 2: https://sinta.kemdikbud.go.id/jour nals/detail?id=947 GARUDA: https://garuda.kemdikbud.go.id/do cuments/detail/1958084	Hasil analisis menunjukkan bahwa kadar air pada karbon aktif yang teraktivasi asam yaitu 3,49% sedangkan karbon aktif yang teraktivasi basa yaitu 2,89% serta kadar abunya masing-masing 6,78% dan 9,03%. Kadar air maupun kadar abu pada penelitian ini telah memenuhi baku mutu SNI 06-3730-1995. Hasil dari uji yang telah dilakukan menunjukkan waktu kontak dan pH optimum karbon aktif asam yaitu 30 menit dengan pH 4 sedangkan karbon aktif basa yaitu 90 menit dengan pH 6. Karbon aktif teraktivasi asam mampu mengadsorpsi senyawa fosfat sebanyak 0,26 mg/g, sedangkan karbon aktif teraktivasi basa memiliki kapasitas adsorpsi sebanyak 0,49 mg/g. Dapat disimpulkan bahwa karbon aktif yang terbuat dari kulit singkong dapat dimanfaatkan sebagai adsorben dalam proses penurunan konsentrasi kadar fosfat pada limbah usaha <i>laundry</i> .
5.	Ling Zhang, Lihua Wan, Ning Chang, Jianyong Liu, Chao Duan, Qi Zhou, Xiangling Li, Xinze Wang (2011)	Removal of Phosphate from Water by Activated Carbon Fiber Loaded with Lanthanum Oxide	Journal of Hazardous Materials, 190(2011), 848-855 ISSN: 0304-3894 https://www.sciencedirect.com/science/article/abs/pii/S0304389411 004596	Hasil dari spektroskopi Fourier transform infrared (FT-IR) dan perubahan nilai pH yang terkait dengan proses adsorpsi mengungkapkan bahwa kemungkinan mekanisme ion fosfat ke ACF-La tidak hanya pertukaran ion dan interaksi coulomb, tetapi juga hasil dari asam Lewis dengan interaksi basa karena ikatan koordinasi La–O. Kapasitas penyisihan fosfat dipelajari menggunakan novel ACF-La. Diamati bahwa waktu impregnasi memiliki pengaruh yang lebih kecil pada efisiensi penyisihan, dibandingkan dengan rasio massa La/ACF, waktu aktivasi dan suhu aktivasi. Penelitian ini dengan jelas menunjukkan bahwa metodologi permukaan respons adalah salah satu metode yang cocok untuk optimasi kondisi persiapan adsorben. Analisis varians (ANOVA) menunjukkan nilai koefisien determinasi yang tinggi (R2 = 0,9827, R2 = 0,9654). Rasio massa La/ACF optimum, waktu aktivasi dan suhu aktivasi ditemukan masing-masing 11,78%, 2,5 jam, 650°C. Selain itu, ACF-La dapat mencapai penghilangan fosfat 97,6%, menyiratkan janjinya untuk penghilangan fosfat dari larutan berair. Akhirnya, pertimbangan mekanistik juga dibahas dalam penelitian kami yang

e-ISSN: 2797-4510

Jurnal Semesta Sehat, Vol 2, No. 2, Agustus 2022 Website: https://jsemesta.iakmi.or.id/index.php/jm

e-ISSN: 2797-4510	2797-4510
-------------------	-----------

No	Peneliti, Tahun	Judul	Jurnal, Volume, dan Terindeks	Hasil
				menggambarkan bahwa fosfat bereaksi dengan ACF La melalui pertukaran ion, coulomb dan interaksi asam-basa Lewis.
6.	Makhrajani Majid, Rahmi Amir, Raviatma Umar, Henni Kumaladewi Hengky (2017)	Efektivitas Penggunaan Karbon Aktif pada Penurunan Kadar Fosfat Limbah Cair Usaha <i>Laundry</i> di Kota Parepare Sulawesi Selatan	Prosiding Seminar Nasional IKAKESMADA "Peran Tenaga Kesehatan dalam Pelaksanaan SDGs", 85-91 ISBN: 978-979-3812-41-0 http://eprints.uad.ac.id/5405/https://onesearch.id/Record/IOS14805.5405	Kondisi kadar fosfat pada air limbah <i>laundry</i> sebelum ditambahkan karbon aktif dinyatakan tidak memenuhi baku mutu karena sebanyak 4,98 mg/l. Pada percobaan pertama peneliti menambahkan karbon aktif sebanyak 1 g, 2 g, dan 3 g dengan hasil pada percobaan penambahan karbon aktif berturut-turut sebanyak 4,35 mg/l (12,65%), 3,20 mg/l (35,74%), dan 1,70 (65,86%). Artinya, penambahan 3 g efektif menurunkan kadar fosfat dengan hasil 1,70 mg/l (65,86%). Sedangkan pada percobaan kedua peneliti juga melakukan hal yang sama, namun hasil uji kadar fosfatnya berbeda. Hasil percobaan penambahan karbon aktif berturut-turut sebanyak 3,35 mg/l (32,73%), 2,59 mg/l (47,99%), dan 1,89 mg/l (62,04%). Artinya, saat penambahan 3 g karbon aktif mampu menurunkan kadar fosfat menjadi 1,89 mg/l (62,04%). Kesimpulan dari penelitian tersebut yaitu dosis yang efektif dalam menurunkan kadar fosfat sebanyak 3 g karena pada dosis tersebut menunjukkan karbon aktif mampu menurunkan kadar fosfat hingga dibawah 2 mg/l.
7.	Irawan Wisnu Wardhana, Dwi Siwi Handayani, Dessy Ika Rahmawati (2013)	Penggunaan Karbon Aktif dari Sampah Plastik untuk Menurunkan Kandungan Phosphat pada Limbah Cair (Studi Kasus: Limbah Cair Industri Laundry di Tembalang, Semarang)	Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 10(1), 30-40 p-ISSN: 1907-817X e-ISSN: 2550-0023 SINTA 2: https://sinta.kemdikbud.go.id/j ournals/detail?id=2530 GARUDA: https://garuda.kemdikbud.go.id /documents/detail/1399159	Pada eksperimen <i>batch</i> , efisiensi penyisihan fosfat terbaik pada karbon aktif dari sampah plastik dengan berat 3 gram berukuran 100-200 mesh yaitu sebesar 45,45%. Sedangkan pada eksperimen kontinyu dengan debit umpan limbah 50 ml/menit sebesar 54,75%. Waktu jenuh pada percobaan batch yaitu 2,5 jam, sedangkan percobaan kontinyu 15 jam (debit 50 ml/menit) dan 12 jam (debit 100 ml/menit). Nilai konstanta kecepatan adsorpsi karbon aktif yang berasal dari sampah plastik akan meningkat seiring dengan berat masa adsorben yang digunakan serta besar debit limbah cair pada kolom adsorpsi.
8.	Wahyu Prasetyo Utomo, Zjahra Vianita Nugraheni, Afifah Rosyidah, Ova Maratus Shafwah, Luthfi	Penurunan Kadar Surfaktan Anionik dan Fosfat dalam Air Limbah <i>Laundry</i> di	Akta Kimia Indonesia, 3(1), 127-140 p-ISSN: 1858-4586 e-ISSN: 2549-3736	Pada penelitian ini, penurunan kadar fosfat menggunakan ukuran karbon aktif yang berbeda, yaitu - 60, -120, dan -200 mesh. Hasil dari percobaan tersebut yaitu pada ukuran terkecil menghasilkan adsorbansi

Jurnal Semesta Sehat, Vol 2, No. 2, Agustus 2022 Website: https://jsemesta.iakmi.or.id/index.php/jm

e-ISSN:	2797-4510
C IDDIT.	2171 7510

No	Peneliti, Tahun Judul		Jurnal, Volume, dan Terindeks	Hasil
	Khoirun Naashihah, Nia	Kawasan Keputih,	SINTA 3:	0,009. Hasil dari penurunan kadar fosfat dengan karbon
	Nurfitria, Ika Fitri Surabaya		https://sinta.kemdikbud.go.id/j	aktif yaitu kandungan fosfat tersebut berkurang sangat
	Ullfindrayani (2018) Menggunakan Karbon		ournals/detail?id=6739	signifikan hingga tidak terdeteksi. Dari percobaan
		Aktif	GARUDA:	tersebut dapat disimpulkan bahwa karbon aktif sangat
			https://garuda.kemdikbud.go.id	berpotensi untuk mengadsorpsi kandungan fosfat yang
			/documents/detail/760284	ada di dalam limbah <i>laundry</i> .

Tabel 2. Hasil Analisis Metode Penelitian

No	Peneliti, Tahun	Sampel	Variabel Bebas	Variabel Terikat	Uji Statistik
1.	Septiany Palilingan, Meity Pungus, Farly Tumimomor (2019)	Air limbah dari sisa buangan pencucian laundry	Kombinasi adsorben (arang aktif dari tempurung kelapa, butiran zeolite, pasir silika, antrasit, ferolit, batu kerikil kecil)	Kadar fosfat	Uji beda rerata (uji T) dengan p (0,009) < 0,05
2.	Pungut, Muhammad Al Kholif, Wilda Diah Indah Pratiwi (2021)	Air limbah <i>laundry</i> dari "Ayu <i>Laundry</i> "	Jenis media dan tinggi media	Kadar COD dan fosfat	Tidak dijelaskan
3.	Lila Kurnia Damayanti dan Euis Nurul Hidayah (2021)	Air limbah <i>laundry</i> daerah sekitar Kembang Kuning, Surabaya	Debit, ketinggian, adsorben karbon aktif komersial	Fosfat dan surfaktan anionik	Uji regresi linier dengan R ² = 0,9418
4.	Illah Sailah, Fitri Mulyaningsih, Andes Ismayana, Tyara Puspaningrum, Anis Annisa Adnan, Nastiti Siswi Indrasti (2020)	Air limbah <i>laundry</i> dari jasa cuci pakaian XYZ di Bogor sebanyak 7 liter	Waktu kontak dan pH optimum	Konsentrasi fosfat pada limbah usaha <i>laundry</i>	Tidak dijelaskan
5.	Ling Zhang, Lihua Wan, Ning Chang, Jianyong Liu, Chao Duan, Qi Zhou, Xiangling Li, Xinze Wang (2011)	Air limbah	Rasio massa ACF-La optimum, waktu aktivasi, suhu aktivasi	Kadar fosfat	Tidak dijelaskan
6.	Makhrajani Majid, Rahmi Amir, Raviatma Umar, Henni Kumaladewi Hengky (2017)	Limbah cair usaha laundry di Kota Parepare, Sulawesi Selatan	Karbon aktif	Kadar fosfat	Tidak dijelaskan
7.	Irawan Wisnu Wardhana, Dwi Siwi Handayani, Dessy Ika Rahmawati (2013)	Limbah cair industri laundry Lumintu yang berada di Kawasan Tembalang	Ukuran karbon aktif, berat karbon aktif, variasi debit, waktu jenuh	Kadar fosfat	Tidak dijelaskan
8.	Wahyu Prasetyo Utomo, Zjahra Vianita Nugraheni, Afifah Rosyidah, Ova Maratus Shafwah, Luthfi Khoirun Naashihah, Nia Nurfitria, Ika Fitri Ullfindrayani (2018)	Air limbah <i>laundry</i> dari sungai sekitar Keputih, Sukolilo, Surabaya	Variasi ukuran partikel atau karbon aktif	Kadar surfaktan anionik dan fosfat	Tidak dijelaskan

Tabel 3. Hasil Analisis Penurunan Kadar Fosfat pada Air Limbah *Laundry*

			***			Konsentrasi Fos	sfat	
No	Peneliti, Tahun	Ketinggian	Waktu Kontak	Metode	Awal (mg/l)	Akhir (mg/l)	Selisih (mg/l)	Penurunan (%)
1.	Septiany Palilingan, Meity Pungus, Farly Tumimomor (2019)	Tidak dijelaskan	Hitungan menit	Filtrasi	6	1	5	83,3
2.	Pungut, Muhammad Al Kholif, Wilda Diah Indah Pratiwi (2021)	R1: karbon aktif 40 cm R2: karbon aktif 60 cm R3: zeolite 40 cm R4: zeolite 60 cm	5 hari	Adsorpsi	13,78	R1: 2,90 R2: 2,36 R3: 1,70 R4: 0,64	R1: 10,88 R2: 11,42 R3: 12,08 R4: 13,14	R1: 78,97 R2: 82,87 R3: 87,65 R4: 95,39
3.	Lila Kurnia Damayanti dan Euis Nurul Hidayah (2021)	10 cm 15 cm 20 cm	120 menit, 240 menit, 360 menit, 480 menit, 600 menit, 720 menit	Adsorpsi	22,50	Ketinggian 10 cm Debit 5 ml/menit = 1,04 Debit 10 ml/menit = 0,30 Debit 15 ml/menit = 1,38 Ketinggian 15 cm Debit 5 ml/menit = 1,13 Debit 10 ml/menit = 0,30 Debit 15 ml/menit = 3,82 Ketinggian 20 cm Debit 5 ml/menit = 0,21	ml/menit = 22,21 • Debit 15 ml/menit = 21,13 Ketinggian 15 cm • Debit 5 ml/menit = 21,38	Ketinggian 10 cm • Debit 5 ml/menit = 95,38 • Debit 10 ml/menit = 98,71 • Debit 15 ml/menit = 93,91 Ketinggian 15 cm • Debit 5 ml/menit = 94,98 • Debit 10 ml/menit = 98,71 • Debit 15 ml/menit = 83,02 Ketinggian 20 cm • Debit 5 ml/menit = 99,07
4.	Illah Sailah, Fitri Mulyaningsih, Andes Ismayana, Tyara Puspaningrum, Anis Annisa Adnan, Nastiti Siswi Indrasti (2020)	Tidak dijelaskan	30 menit, 60 menit, 90 menit, 120 menit, 150 menit, 180 menit, 210 menit	Adsorpsi	6,04	Teraktivasi asam: 5,12 Teraktivasi basa: 5,02	Teraktivasi asam: 0,92 Teraktivasi basa: 1,02	Teraktivasi asam: 15,21 Teraktivasi basa: 16,93

			XX 7 - 1 - 4			Konsentrasi Fos	fat	
No	Peneliti, Tahun	Ketinggian	Waktu Kontak	Metode	Awal (mg/l)	Akhir (mg/l)	Selisih (mg/l)	Penurunan (%)
5.	Ling Zhang, Lihua Wan, Ning Chang, Jianyong Liu, Chao Duan, Qi Zhou, Xiangling Li, Xinze Wang (2011)	1 jam	2,5 jam	Adsorpsi	20	0,48	19,52	97,6
6.	Makhrajani Majid,					Percobaan 1	Percobaan 1	Percobaan 1
	Rahmi Amir,					1 g: 4,35	1 g: 0,63	1 g: 12,65
	Raviatma Umar,	m:	Tidak dijelaskan			2 g: 3,20	2 g: 1,78	2 g: 35,74
	Henni Kumaladewi	Tidak		Filtrasi	4,98	3 g: 1,70	3 g: 3,28	3 g: 65,86
	Hengky (2017)	dijelaskan				Percobaan 2	Percobaan 2	Percobaan 2
						1 g: 3,35	1 g: 1,63	1 g: 32,73
						2 g: 2,59	2 g: 2,39	2 g: 47,99
	****					3 g: 1,89	3 g: 3,09	3 g: 62,04
7.	Irawan Wisnu		Tidak	Adsorpsi		Percobaan batch: 5,57	Percobaan batch:	Percobaan batch:
	Wardhana, Dwi Siwi	65 cm			10,21	Percobaan kontinyu:	4,64 Percobaan	45,45
	Handayani, Dessy Ika		dijelaskan	-		4,62		Percobaan kontinyu:
	Rahmawati (2013)						kontinyu: 5,59	54,75
8.	Wahyu Prasetyo Utomo, Zjahra Vianita							
	Nugraheni, Afifah							
	Rosyidah, Ova							
	Maratus Shafwah,	Tidak dijelaskan	Tidak	Adsorpsi	14,14	0,00	14,14	100
	Luthfi Khoirun		dijelaskan	7 10 301 p31	14,14	0,00	17,17	100
	Naashihah, Nia							
	Nurfitria, Ika Fitri							
	Ullfindrayani (2018)							

Pada Tabel 1 dapat dilihat bahwa artikel yang dikaji dalam kajian literatur terpublikasi dari tahun 2011 sampai 2021 dengan total delapan artikel yang akan dikaji. Satu artikel terindeks ISBN yaitu (Majid et al., 2017); tujuh artikel terindeks ISSN (Palilingan et al., 2019), (Pungut et al., 2021), (Nurul Hidayah & Lila Kurnia Damayanti, 2021), (Sailah et al., 2020), (L. Zhang et al., 2011), (Wardhana et al., 2013), dan (Utomo et al., 2018); enam artikel terindeks Garuda (Palilingan et al., 2019), (Pungut et al., 2021), (Nurul Hidayah & Lila Kusrnia Damayanti, 2021), (Sailah et al., 2020), (Wardhana et al., 2013), dan (Utomo et al., 2018); serta empat artikel terindeks SINTA (Palilingan et al., 2019), (Sailah et al., 2020), (Wardhana et al., 2013), dan (Utomo et al., 2018). Dari delapan artikel yang telah dianalisis, terdapat satu artikel yang menunjukkan hasil paling efektif karena hasil penelitian tersebut dapat menurunkan kadar fosfat hingga tidak terdeteksi lagi.

Berdasarkan tabel 2, dapat dilihat bahwa tujuh artikel yang dikaji menggunakan sampel air limbah laundry (Palilingan et al., 2019), (Pungut et al., 2021), (Nurul Hidayah & Lila Kurnia Damayanti, 2021), (Sailah et al., 2020), (L. Zhang et al., 2011), (Majid et al., 2017), dan (Wardhana et al., 2013), serta pada penelitian Zhang et al (2011) menggunakan sampel air limbah. Variabel bebas yang digunakan pada artikel meliputi kombinasi adsorben (Palilingan et al., 2019), jenis media (Pungut et al., 2021), tinggi media (Pungut et al., 2021) dan (Nurul

Hidayah & Lila Kurnia Damayanti, 2021); debit (Nurul Hidayah & Lila Kurnia Damayanti, 2021) dan (Wardhana et al., 2013); waktu kontak (Sailah et al., 2020); pH (Sailah et al., 2020); rasio massa (L. Zhang et al., 2011); waktu aktivasi (L. Zhang et al., 2011); suhu optimal (L. Zhang et al., 2011); karbon aktif (Majid et al., 2017); ukuran media (Wardhana et al., 2013) dan (Utomo et al., 2018); berat media (Wardhana et al., 2013); serta waktu jenuh (Wardhana et al., 2013) dengan variabel terikat kadar fosfat. Pada artikel yang akan dikaji, terdapat satu artikel yang menggunakan uji statistik regresi linear (Nurul Hidayah & Lila Kurnia Damayanti, 2021); satu artikel menggunakan uji T (Palilingan et al., 2019); serta enam artikel lainnya tidak dijelaskan mengenai uji statistik yang digunakan.

Berdasarkan tabel 3, diketahui bahwa terdapat ketinggian tertinggi pada penelitian Wardhana et al (2013) yaitu dengan tinggi 65 cm, waktu kontak paling lama terdapat pada penelitian Pungut et al (2021) yaitu selama 7 hari, konsentrasi awal paling tinggi terdapat pada penelitian Nurul Hidayah & Lila Kurnia Damayanti (2021) dengan konsentrasi sebanyak 22,5 mg/l, konsentrasi akhir paling rendah terdapat pada penelitian Utomo et al (2018) dengan konsentrasi 0,000 mg/l. Efektivitas penurunan tertinggi dibuktikan pada penelitian Utomo et al (2018) dimana pada penelitian ini berhasil menurunkan kadar fosfat sebesar 100% dengan konsentrasi awal 14,148 mg/l dan hasil akhirnya menjadi 0,000 mg/l,sedangkan penurunan paling rendah terdapat pada penelitian Majid et al (2017) dimana pada percobaan pertama dengan berat karbon aktif 1 g dapat menurunkan sebanyak 12,65% dengan konsentrasi awal 4,98 mg/l menjadi 4,35 mg/l.

Pembahasan

Berdasarkan hasil analisis dari delapan artikel diatas, diketahui bahwa satu artikel terindeks ISBN, tujuh artikel terindeks ISSN, enam artikel terindeks Garuda, dan empat artikel terindeks SINTA. Selain itu, dijelaskan juga bahwa terdapat tujuh artikel yang dikaji menggunakan sampel air limbah *laundry* dan satu artikel menggunakan sampel air limbah. Variabel bebas yang digunakan pada artikel meliputi kombinasi adsorben, jenis media, tinggi media, debit, waktu kontak, pH, rasio massa, waktu aktivasi, suhu optimal, karbon aktif, ukuran media, berat media, dan waktu jenuh.

Karbon aktif sering kali digunakan sebagai bahan adsorben untuk mengurangi zat pencemar yang terdapat di dalam limbah karena sifat utama dari karbon aktif yaitu daya serapnya yang cukup bagus. Penambahan karbon aktif pada limbah limbah laundry berperan untuk meningkatkan efisiensi dalam menurunkan kandungan bahan organik terutama kadar fosfat ataupun kadar lainnya yang ada dalam limbah laundry (Astuti & Mersi, 2015; Sinaga et al., 2020). Karbon aktif biasanya terbuat dari berbagai macam bahan, contohnya seperti batu bara, kayu, tempurung kelapa, dan beberapa bahan lainnya melalui proses *pyrolyzing* dan *carburizing* dengan temperatur antara 700-800°C

(Mu'in *et al.*, 2017). Karbon aktif yang terbuat dari batok kelapa mempunyai kemampuan daya serap yang cukup besar terhadap senyawa organik maupun anorganik, yaitu sekitar 25-100%. Luas permukaan karbon aktif yang digunakan sekitar 300-350 m²/g yang kemudian akan membuat karbon aktif tersebut sebagai adsorben (Majid *et al.*, 2017). Proses penyerapan biasanya dipengaruhi oleh beberapa faktor, antara lain jenis zat penyerap yang digunakan, jenis zat yang diserap, luas permukaan zat, konsentrasi zat yang akan diserap, dan suhu (Utomo *et al.*, 2018)

Penelitian Palilingan et al (2019) menggunakan sampel limbah dari sisa proses dan menggunakan bahan-bahan laundry adsorben alam yang akan menunjukkan tentang pengaruh kombinasi zat penyerap dalam proses menurunkan kadar fosfat yang ada di limbah laundry. Kombinasi untuk adsorben ini antara lain arang aktif yang terbuat dari tempurung kelapa, butiran zeolite, ijuk, antrasit, pasir silika, batu, pasir aktif, kerikil, pasir biasa, dan arang biasa. Pada penelitian Palilingan et al (2019) ini menyatakan hasil dari penurunan kadar fosfat sebelum dan sesudah perlakuan filtrasi yaitu 83,3% dimana kadar fosfat sebelum perlakuan adalah 6 mg/l dan hasil setelah filtrasi menjadi 1 mg/l dengan waktu kontak dalam hitungan menit saja. Hasil penelitian Palilingan et al (2019) menunjukkan bahwa proses filtrasi menggunakan media kombinasi zat penyerap tersebut dapat mengurangi kadar fosfat dengan hasil yang signifikan hingga 83,3% dimana

kadar tersebut sudah memenuhi standar baku mutu yang telah tercantum dalam PERMEN LH RI No 5 Tahun 2014. Dari hasil tersebut dapat disimpulkan bahwa kemungkinan hasil dari penurunan kadar fosfat akan lebih signifikan apabila waktu kontak antara sampel dengan zat penyerap lebih lama dan apabila volume adsorben yang digunakan lebih besar sehingga hasil dari penurunan kadar fosfat juga akan lebih signifikan.

Pada penelitian Pungut et al (2021) menggunakan sampel limbah laundry dari "Ayu Laundry" dengan hasil awal sampel limbah tersebut terdapat fosfat sebesar 13,78 mg/l. Pada penelitian Pungut et al (2021) menggunakan dua media, yaitu karbon aktif dan zeolite dengan variasi ketinggian 40 cm dan 60 cm. Terdapat variasi kode untuk memudahkan penelitian, seperti R1untuk karbon aktif 40 cm, R2 untuk karbon aktif 60 cm, R3 untuk zeolite 40 cm, dan R4 untuk zeolite 60 cm. Waktu yang digunakan untuk pengamatan yaitu 5 hari dengan 2 kali pengulangan. Hasil penelitian Pungut et al (2021) pada empat reaktor menunjukkan bahwa rata-rata pada masing-masing treatment yaitu 78,97% dengan kadar 2,90 mg/l; 2,87% dengan kadar 2,36 mg/l; 87,65% dengan kadar 1,70 mg/l; dan 96,44% dengan kadar 0,64 mg/l. Hasil tersebut menunjukkan penyisihan tertinggi terdapat pada hari ke 3. Berdasarkan penelitian Pungut et al (2021) menunjukkan bahwa media zeolite lebih efektif untuk menurunkan kadar fosfat dibandingkan karbon aktif. Meskipun

begitu media karbon aktif juga mampu menurunkan kadar fosfat.

Pada penelitian Nurul Hidayah & Lila Kurnia Damayanti (2021) menggunakan sampel dari laundry di Kawasan Kembang Kuning dengan hasil analisis awal sebesar 22,5 mg/l. Pada penelitian Nurul Hidayah & Lila Kurnia Damayanti (2021) menggunakan variasi debit yaitu 5 ml/menit, 10 ml/menit, dan 15 ml/menit karena variasi debit memiliki pengaruh pada proses penyisihan fosfat dan semakin kecil variasi debit yang digunakan maka waktu kontak fosfat dengan karbon aktif akan semakin lama sehingga proses adsorpsi pun juga akan semakin efektif. Pada penelitian Nurul Hidayah & Lila Kurnia Damayanti (2021) juga menggunakan beberapa variasi tinggi yaitu 10 cm, 15 cm, dan 20 cm karena rendahnya tinggi adsorben dan besarnya debit akan mempengaruhi efektivitas adsorben, sebaliknya jika adsorbennya tinggi dan debit yang digunakan kecil maka memerlukan waktu yang cukup lama untuk mendapatkan hasil yang optimal. Hasil dari penelitian Nurul Hidayah & Lila Kurnia Damayanti (2021) menyatakan bahwa ketinggian 20 cm dan debit 5 ml/menit dapat menurunkan kadar fosfat sebanyak 99,07% dengan kadar awal 22,5 mg/l menjadi 0,21 mg/l.

Pada penelitian Sailah *et al* (2020) menggunakan sampel limbah *laundry* dari usaha *laundry* XYZ di daerah Bogor dengan konsentrasi fosfat 6,04 mg/l dan akan menggunakan karbon aktif dari kulit singkong yang memanfaatkan kadar airnya sebanyak

77,99-80,95%. Pada saat dilakukan uji kadar air dan kadar abu adsorben menunjukkan bahwa menggunakan larutan asam (HCl) lebih baik daripada menggunakan larutan basa (KOH) pada konsentrasi yang sama untuk perendaman adsorben. Terbukti dengan adsorben yang telah teraktivasi asam mengandung kadar abu 6,78% dibandingkan adsorben teraktivasi basa yaitu 9,03%. Hasil penelitian Sailah et al (2020) yaitu sampel teraktivasi asam pada menit ke-30 mampu mengurangi kadar fosfat sebanyak 15,21% yang memiliki konsentrasi awal 6,04 mg/l dan akhirnya menjadi 5,12 mg/l, sedangkan sampel yang teraktivasi basa pada menit ke-90 dapat menurunkan kadar fosfat sebanyak 16,93% yang bermula 6,04 mg/l akhirnya menjadi 5,01 mg/l. Hal tersebut membuktikan bahwa karbon aktif yang telah teraktivasi basa akan lebih mampu menyerap fosfat dibandingkan karbon aktif yang teraktivasi asam. Selain itu, jenis serta sifat dari fosfat yang digunakan akan memberi pengaruh terhadap kemampuan karbon aktif selama proses penyerapan dan hal ini yang biasa ditemukan pada limbah laundry adalah ortofosfat.

Pada penelitian Zhang *et al* (2011) menggunakan sampel air limbah dengan karbon aktif yang mengandung *Lanthanum Oxide* (ACF-La) dan menunjukkan bahwa dapat menurunkan sebesar 97,6% dari konsentrasi awal kadar fosfat 20 mg P/L menjadi 0,48 mg P/L yang terdapat dalam air limbah. Variabel yang mempengaruhi penelitian Zhang *et al* (2011) yaitu rasio massa ACF-La (11,78%),

waktu aktivasi (2,5 jam), dan suhu aktivasi (650°C). Dari hasil penelitian Zhang et al (2011) membuktikan bahwa karbon aktif yang mengandung *Lanthanum Oxide* dapat mengurangi kadar fosfat yang ada di air limbah (Zhang et al., 2022).

Penelitian Majid al(2017)et menggunakan sampel limbah *laundry* dari Kota Parepare, Sulawesi Selatan dengan konsentrasi awal 4,98 mg/l dan dilakukan dua kali percobaan. Pada percobaan pertama dilakukan tiga kali penambahan karbon aktif dengan variasi berat yang berbeda yaitu sebanyak 1 g, 2 g, dan 3 g dengan masing-masing dapat menurunkan sebesar 4,35 mg/l (12,65%), 3,20 mg/l (35,74%), dan 1,70 mg/l (65,86%). Pada percobaan kedua juga dilakukan tiga kali penambahan dengan variasi berat yang berbeda yaitu sebanyak 1 g, 2 g, dan 3 g dengan masing-masing dapat menurunkan sebesar 3,35 mg/l (32,73%), 2,59 mg/l (47,99%), dan 1,89 mg/l (62,04%). Tingginya konsentrasi karbon aktif yang digunakan maka kadar fosfat yang terkandung dalam limbah laundry akan semakin rendah. Berdasarkan penelitian Majid et al (2017), ditambahkannya karbon aktif sebanyak 3 g dinilai efektif mengurangi kadar fosfat hingga memenuhi standar baku mutu yang telah ditetapkan.

Penelitian Wardhana *et al* (2013) menggunakan sampel limbah dari *laundry* Lumintu di Kawasan Tembalang, Semarang dengan konsentrasi awal 10,21 mg/l dan melalui dua tahapan, yaitu percobaan batch dan

percobaan kontinyu. Ukuran karbon aktif, berat karbon aktif, variasi debit, dan waktu jenuh mempengaruhi penelitian ini. Semakin kecil ukuran diameter adsorben, semakin tinggi persentasi reuksi fosfatnya. Semakin berat media dipakai, semakin tinggi efisiensi yang penurunannya. Semakin lamanya waktu kontak mempengaruhi konsentrasi fosfat menjadi semakin rendah. Selain itu, tingginya debit akan mempengaruhi waktu jenuhnya menjadi semakin cepat. Hasil dari pesnelitian Wardhana et al (2013) pada percobaan batch dengan ukuran 100-200 mesh, berat 3 g, dan waktu jenuh 2,5 jam dapat menurunkan sebesar 45,45% yang mulanya 10,21 mg/l menjadi 5,57 mg/l. Sedangkan pada percobaan kontinyu dengan ukuran 100-200 mesh, berat 3 gr, debit 50 ml/menit, dan waktu jenuh 15 jam dapat menurunkan sebesar 54,75% yang mulanya 10,21 mg/l menjadi 4,62 mg/l.

Penelitian Utomo etal(2018)menggunakan sampel limbah laundry di aliran sungai sekitar Keputih, Sukolilo, Surabaya dengan konsentrasi awal 14,148 mg/l dan menggunakan variasi ukuran karbon aktif -60,-120, dan -200 mesh. Uji adsorpsi pada penelitian Utomo et al (2018) menunjukkan hasil yang sangat signifikan yaitu mampu menurunkan kadar fosfat hingga tidak terdeteksi lagi setelah dilakukan proses penyerapan dengan ukuran karbon aktif -200 mesh. Secara umum dapat ditarik kesimpulan bahwa semakin kecilnya ukuran karbon aktif maka kemampuannya untuk melakukan proses adsorpsi semakin besar.

Berdasarkan hasil analisis dari delapan artikel di atas, karbon aktif terbukti mampu untuk menurunkan kadar fosfat pada air limbah laundry dengan metode adsopsi maupun filtrasi. Untuk mendapatkan hasil yang efektif perlu memperhatikan beberapa hal, antara lain debit, waktu aktivasi, ukuran media. dan lain sebagainya hal tersebut karena dapat mempengaruhi keefektivan karbon aktif dalam proses penurunan kadar fosfat pada air limbah laundry. Berdasarkan hasil analisis dari delapan artikel, terdapat satu artikel yang menunjukkan mampu menurunkan kadar fosfat hingga tidak terdeteksi setelah perlakuan. Hal tersebut sesuai dengan standar baku mutu menurut PERMEN LH RI No 5 Tahun 2014 yaitu 2 mg/l serta menurut Peraturan Daerah Jawa Tengah No 5 Tahun 2012 tentang baku mutu air limbah industri sabun dan detergen yang menetapkan bahwa nilai ambang batas untuk kadar fosfat yaitu 2 mg/l. Dengan demikian, karbon aktif dapat dimanfaatkan dalam upaya penurunan kadar fosfat yang terkandung dalam air limbah laundry agar tidak menimbulkan bahaya untuk manusia dan lingkungan sekitarnya.

Kesimpulan

Hasil dari kajian literatur menyimpulkan bahwa variasi ukuran, debit, jenis media, tinggi media, waktu kontak, dan berat media mempengaruhi upaya untuk menurunkan kadar fosfat pada air limbah *laundry*. Berdasarkan dari analisis yang telah dilakukan, karbon aktif terbukti mampu untuk menurunkan kadar fofat pada air limbah *laundry*.

Jurnal Semesta Sehat, Vol 2, No. 2, Agustus 2022

e-ISSN: 2797-4510 Website: https://jsemesta.iakmi.or.id/index.php/jm

Saran

Bagi pemerintah

Diharapkan dapat membuat kebijakan yang lebih tegas demi kelestarian alam sekitar agar tetap asri.

Bagi masyarakat

Diharapkan dapat menjaga lingkungan sekitar agar tidak tercemar dan bisa memenuhi kebijakan pemerintah.

Bagi peneliti selanjutnya

Diharapkan dapat melakukan penelitian terkait topik pengaruh karbon aktif terhadap penurunan kadar fosfat pada pengolahan air limbah *laundry* dengan lebih detail dan menemukan metode yang lebih efektif demi menjaga kelestarian alam sekitar.

Ucapan Terimakasih

Penghargaan dan terima kasih dari penulis kepada pengelola Program Kesehatan Masyarakat Fakultas Ilmu Kesehatan Universitas Muhammadiyah Surakarta yang telah memfasilitasi penulis selama proses penyusunan kajian literatur.

Daftar Pustaka

- Adyatma, S., & Kartika, N. Y. (2013). Dampak Pencemaran Lingkungan terhadap Kesehatan. Ilmu Sosial Dan Pendidikan, *15*(1), 73–78.
- Apriyani, N. (2017). Penurunan Kadar Surfaktan dan Sulfat dalam Limbah Laundry. In MITL Media Ilmiah Teknik Lingkungan (Vol. 2, Issue 1).
- Asmadi dan Suharno. (2012). Dasar-Dasar Teknologi Pengolahan Air Limbah. Gosyen

Publishing.

- Haderiah, H., Sulasmi, S., & Erlani, E. (2015). Effectiveness of Simple Screening Media of Activated Chorcoal and Zeolite to Reduce Waste Water Levels in Laundry Detergent. International **Journal** Sciences: Basic and Applied Research (IJSBAR),24(3), 180–186. https://gssrr.org/index.php/JournalOfBasic And Applied/article/view/4676
- Hartono, ., Hulu, V. T., Samosir, F. J., Siregar, S. D., Sibagariang, E. E., Silalahi, M. I., & Adha, A. (2021). The Effectiveness of Activated Carbon and PAC in Reducing Phosphate Levels in Laundry Liquid Waste. Himbep 2020, 174-180. https://doi.org/10.5220/0010292201740180
- Hasanuddin, T. F. M. & R. (2014). Analisis Segmentasi Pengaruh Gaya Hidup Terhadap Keputusan Penggunaan dan Kepuasan Konsumen Jasa Simply Fresh Laundry di Kota Pekanbaru Lifestyle Segmentation Analysis of the Decision of Use and Customer Satisfaction in Simply Fresh Laundry Services in Pe. Jom Fekon, *1*(2).
- Hutomo, S. W. S. (2015). Keefektifan Dosis Poly Chloride Alumunium (PAC)dalam Menurunkan Kadar Phosphate pada Air Limbah Laundry di Gatak Gede, Boyolali [Universitas Muhammadiyah Surakarta]. http://eprints.ums.ac.id/39876/
- Majid, M., Amir, R., Umar, R., & Hengky, H. K. (2017). Efektivitas Penggunaan Karbon

- Aktif Pada Penurunan Kadar Fosfat Limbah Cair Usaha Laundry Di Kota Parepare Sulawesi Selatan. *Prosiding* Seminar Nasional IKAKESMADA "Peran Tenaga Kesehatan Dalam Pelaksanaan SDGs."
- Masduki Nurul Hidayah, E., & Lila Kurnia Damayanti. (2021). Pengaruh Adsorben Komersial Terhadap Penurunan Fosfat Dan Surfaktan Anionik (Detergen) Pada Air Limbah Laundry. *EnviroUS*, 2(1), 18–26. https://doi.org/10.33005/envirous.v2i1.54
- Palilingan, S. C., Pungus, M., & Tumimomor, F. (2019). Penggunaan Kombinasi Adsorben sebagai Media Filtrasi dalam Menurunkan Kadar Fosfat dan Amonia Air Limbah Laundry. *Fullerene Journal of Chemistry*, 4(2). https://doi.org/10.37033/fjc.v4i2.59
- Pasaribu, M.-. (2020). Phosphate Reduction from the Artificial Sample of Laundry Wastewater by using Bintaro (Cerbera Manghas) Fruit Shell Adsorbent. *Journal of Environmental Engineering and Waste Management*, 5(1), 1. https://doi.org/10.33021/jenv.v5i1.961
- Peraturan Daerah Jawa Tengah. (2012).

 Peraturan Daerah Provinsi Jawa Tengah No
 5 Tahun 2012. Peraturan Daerah Provinsi
 Jawa Tengah Tentang Baku Mutu Air
 Limbah, 32.
- Peraturan Menteri Lingkungan Hidup Republik Indonesia. (2014). Peraturan Menteri Lingkungan Hidup Republik Indonesia No 5 Tahun 2014.

- Pungut, Muhammad Al Kholif, W. D. I. P. (2021). Penurunan Kadar Chemical Oxygen Demand (COD) dan Fosfat pada Limbah Laundry dengan Metode Adsorpsi.

 Jurnal Sains Dan Teknologi Lingkungan, 13(2), 155–165.
- Roosdiana Mu'in, Septi Wulandari, N. P. P. (2017). Pengaruh Kecepatan Pengadukan dan Massa Adsorben terhadap Penurunan Kadar Phospat pada Pengolahan Limbah Laundry. *Jurnal Teknik Kimia.*, 23(1), 67–76.
 - http://ejournal.ft.unsri.ac.id/index.php/JTK/article/view/753
- Sailah, I., Mulyaningsih, F., Ismayana, A., Puspaningrum, T., Adnan, A. A., & Indrasti, N. S. (2020). Kinerja Karbon Aktif dari Kulit Singkong dalam Menurunkan Konsentrasi Fosfat pada Air Limbah Laundry. *Jurnal Teknologi Industri Pertanian*, 30(2), 180–189.
- Sinaga, M. S., Astuti, S. W., & Gultom, E. (2020). Degradation of Phospate in Laundry Waste with Biosand Filter Method. *IOP Conference Series: Materials Science and Engineering*, 801(1). https://doi.org/10.1088/1757-899X/801/1/012067
- Sri Widya Astuti, & Mersi Suriani Sinaga. (2015). Pengolahan Limbah Laundry menggunakan Metode Biosand Filter untuk Mendegradasi Fosfat. *Jurnal Teknik Kimia USU*, 4(2). https://doi.org/10.32734/jtk.v4i2.1471

- Suprijandani, Hadi, S., & Narwati. (2021).

 Detergent Waste Treatment Through the Modification of Biofilter Reactors.

 International Journal of Public Health Science, 10(3), 590–599. https://doi.org/10.11591/ijphs.v10i3.20843
- Utomo, W. P., Nugraheni, Z. V., Rosyidah, A., Shafwah, O. M., Naashihah, L. K., Nurfitria, N., & Ullfindrayani, I. F. (2018). Penurunan Kadar Surfaktan Anionik dan Fosfat dalam Air Limbah Laundry di Kawasan Keputih, Surabaya menggunakan Karbon Aktif. *Akta Kimia Indonesia*, *3*(1), 127–140. https://doi.org/10.12962/j25493736.v3i1.35
- Wardhana, I. W., H, D. S., & R, D. I. (2013).

 Penggunaan Karbon Aktif dari Sampah
 Plastik untuk Menurunkan Kandungan
 Phosphat pada Limbah Cair (Studi Kasus:
 Limbah Cair Industri Laundry di

28

- Tembalang, Semarang. *Jurnal Presipitasi*, 10(1), 30–40.
- Zhang, L., Wan, L., Chang, N., Liu, J., Duan, C., Zhou, Q., Li, X., & Wang, X. (2011). Removal of Phosphate from Water by Activated Carbon Fiber Loaded with Lanthanum Oxide. *Journal of Hazardous Materials*, 190(1–3), 848–855. https://doi.org/10.1016/j.jhazmat.2011.04.0
- Zhang, Y., Yang, K., Fang, Y., Ding, J., & Zhang, H. (2022). Removal of Phosphate from Wastewater with a Recyclable La-Based Particulate Adsorbent in a Small-Scale Reactor. *Water (Switzerland)*, *14*(15). https://doi.org/10.3390/w14152326